

Effects of Sampling Time and Data Interpretation Methods on The Quality of Airborne Data

Joe Spurgeon, Ph.D.
Bayshore Environmental
Fullerton, CA

IAQA Exposition, Orlando, FL Feb. 27 – March 1, 2013

www.bi-air.com

Two Mini-Presentations

- 1. Effects of Sampling Time on Data Quality
- 2. Indoor-Outdoor Comparisons & Data Quality

Questions About Sampling Time

- [1] What is a long-term sample?
- [2] Can we even collect long-term samples? Theoretical concept or practical option?
- [3] Why should we care?
 Does sampling time actually affect data quality?

[1] NIOSH (Nat. Insti. of Occup. Safety and Health)

- Published sampling strategy manual in 1977
 - "Occupational Exposure Sampling Strategy Manual"
 - Pub. 77-173: Google for free download
- Section 3.3 defines long-term samples as those collected for 60 minutes or longer
 - Long-term samples preferred method
 - Short-term "grab" samples least desirable
 - Typical for mold

[2] Are Long-Term Samples A Practical Option?

- Yes. Long-Term Spore Samples Have Been Collected
 Since at Least 1986*
- Personally since 2003 [10 years]

* Palmgren, L., G. Strom, G. Blomquist and P. Malmberg: Collection of airborne microorganisms on Nucleopore Filters, estimation and analysis - CAMNEA method.

J. Appl.Bacteriol., 61:401-406 (1986)

[3] Limitations of Short-Term Samples?

- (A) Detecting Problems Is Harder
 - Greater Variability => More False Negatives
- (B) Interpreting Data Is More Difficult
 - Poor Reproducibility => Poor Discrimination
- (C) False Assessment of Occupant Risk
 - Poor estimate of average concentration
 - Average concentration => Adverse effects

Examples Illustrating The Effectsof Sampling Time

- [A] Problem Detection
- [B] Data Interpretation
- [C] Occupant Risk

[A] Detecting The Problem

- Problem Operating Room in a Hospital
 - Surgeons refusing to operate
 - 10-min Air-O-Cell samples
 - "No problem"
 - Physicians not satisfied
 - A 3-hour filter-cassette sample
 - 4 Asp/Pen spores [25 spores/m³]
 - Detecting one Asp/Pen spore every 45 minutes
 - Recommended thorough inspection
 - Result: Two walls were remediated

[B] Interpreting The Data: Collapsed Ceiling in Master Bathroom

Ceiling had been repaired, but no remediation

Filter cassette (FC) and Air-O-Cell (AOC) samples collected

Concurrent 60-minute FC [Blue] and 5-minute AOC [Red] Samples

[C] Assessing Occupant Risk

SAMPLER	AOC (5 MIN)	FC (10 MIN)
Samples	143	122
Median	585	674
Average	5,040	3,550

No statistical difference between median concentrations for samplers

AOC = Air-O-Cell

FC = Filter Cassette

Comparing Distributions[Database Method]

Conclusion: Any differences in next slide were not due to sampler

[C] Assessing Occupant Risk

SAMPLER	FC (10 MIN)	FC (60 MIN)
Samples	122	75
Median	674	[4.5x] 2,697
Average	3,550	[5.5x] 23,550

Significant statistical difference between median concentrations for sample times

Comparing Distributions [Database Method]

AOC = Air-O-Cell

FC = Filter Cassette

Differences in median concentrations due to sample times – theoretically expected result (Rappaport et al)

Can We Explain These Differences Between Short- and Long-Term Samples?

Two Example Distributions

What do "clean" & "moldy" distributions actually look like in the field?

Two Example Distributions: Medians = 500 Sp/m³ and 2,500 Sp/m³

Medians Differ by A Factor of 5

- 1. Constructed 60sample distributions
- 2. Randomized data
- 3. Plot as consecutive 5-min samples

Consequences?

Spores Are Particles, Not Gases

65 % < 2,000 S/m³
=> Chance of False
Negative

Short-Term Samples => Miss Peaks

Long-Term Samples => Capture Peaks

Distributions as 60-Minute Samples

Clear Separation, No Overlap: Confident Interpretation

Interpreting Airborne Samples

It is often stated that <u>airborne</u> samples cannot be interpreted, that they are too variable.

My Opinion: Not true. It's <u>short-term</u> airborne samples that cannot be interpreted.

But – we only collect short-term samples, so we just assume this statement applies to <u>all</u> airborne samples – which it may not

Summary

Short-term samples can result in:

[1] A Failure to Detect the Problem [OR]
Higher percentage of false negatives

[2] Difficulty in Interpreting the Data [Apt]
Data just too variable

[3] Incorrect Assessment of Occupant Risk [Avg]
Short-term => miss peak concentrations

MY OPINION:

THE QUALITY OF SHORT-TERM AIRBORNE DATA, AND ALL WE HAVE IS SHORT-TERM DATA, IS SO POOR THAT IT IS NOT EVEN POSSIBLE TO ASSESS THE ASSOCIATION BETWEEN THE CONCENTRATIONS OF AIRBORNE SPORES AND ADVERSE HEALTH EFFECTS

Comparison of Indoor To Outdoor Spore Concentrations In Residential Properties

Joe Spurgeon, Ph.D.*

Daniel Bridge, Ph.D., CIH**

*Bayshore Environmental, Fullerton, CA

**D. Bridge Environmental, Pearland, TX

www.d-bridge-environmental.com

Presentation Is Limited in Scope

Fungal	Residential	Commercial
Ecology	Properties	Properties
Abnormal	Applies	Residence Time Distributions Work
Normal	Doesn't Apply	

My Opinion

- indoor <u>contaminant</u> spore concentrations are a function of the indoor micro-environment rather than the outdoor macro-climate
- Therefore, comparing indoor to outdoor spore concentrations should have little utility

If Correct, Then Expect

- [1] Little variation in indoor concentrations of contaminant spores by season or geography
- [2] Little association between indoor & outdoor contaminant spore counts

[1] Effects of Season and Geography

- Macintosh, et al. JOEH, 3:379-89 (2006)
- Spore data from EPA BASE* program
- 44 office buildings in 6 of 10 climate zones
 - 6 indoor and 2 outdoor samples
 - Morning and afternoon

*Building Assessment and Survey Evaluation

Outdoor Spores [Commercial Buildings]

- Spore counts <u>did</u> vary significantly
 - by season
 - by EPA climate zone (geographically)
 - with time of day
 - (morning greater than afternoon)

"Significant" means statistically significant

Indoor Spores [Commercial Buildings]

- Spore counts did <u>not</u> vary
 - by season
 - By EPA climate zone (geographically)
 - with time of day
- Conclusion: little effect of season or geography on indoor spore counts
 - Numerous peer-reviewed studies with similar conclusions about I/O comparisons

[2] Association Between Indoor and Outdoor Spores in Contaminated Houses

- Data provided by Rimkus Consulting Group*
- 108 residential properties
 - Criterion: Asp/Pen detected
 - Broad geographical range
 - located in 23 cities in 9 states
 - Representing 7 of 10 EPA climate zones
 - Collected across seasons 2-year period

*Dan Bridge

108 Residential Projects

- Sample collection: 5-minute Air-O-Cell
- 422 indoor samples
 - Typically 4 indoor samples per project
- 235 outdoor samples
 - Typically 2 outdoor samples , first & last
- Spore types:
 - Cladosporium Dominant Outdoors
 - Asp/Pen Dominant Indoors

[1] Effect of Geography on Indoor Asp/Pen Spores

Rimkus Consulting Group

State	N	LCL	Median	UCL
LA	23	90	200	450
AZ	26	80	210	520
GA	34	180	290	480
NV	23	150	365	870
IL	66	270	465	800
TX	89	465	700	2,700
FL	56	370	770	1,600
MD	18	450	1,300	4,000

No statistical difference in Medians for 6 of 8 states: 95 % Confidence Limits

[2] Correlations

Rimkus: Average Concentrations per Project

Cladosporium: r = 0.26

Asp/Pen: r = 0.36

Little correlation between indoor and outdoor spores

Conclusions

- Indoor spores in contaminated houses:
 - Showed little correlation with outdoor spores
 - Showed little variation with season or geography
- Comparing indoor to outdoor spore concentrations:
 - Had little utility in these studies
 - Has been shown to have little utility in numerous other peer-reviewed studies
 - Ignores the utility of comparing "distributions" rather than concentrations

Are There other Approaches to Interpreting Airborne Samples?

Reference Method [Lower Utility]

Compare indoor to outdoor spore concentrations

Control Method [Better Utility]

Compare spore concentrations in area A to area B [Similar Exposure Areas]

Database Method [Higher Utility]

Compare spore concentrations to the <u>distribution</u> of concentrations from similar projects

=> Avoids indoor-outdoor comparisons

=> Supports Numerical Guidelines

ERMI: Example of A "Database Method with Numerical Guidelines"

Supported by many labs: not controversial

Database Methods

Comparing Distributions, Not Concentrations

Standard Deviation if Mean

Normal Deviation if Median

Study by Baxter et al*

"Database Method with Numerical Guidelines"

- 393 airborne samples collected in 126 residential buildings in CA
- Properties were characterized as "clean", "water stained", or "moldy"

* Baxter, Perkins, McGhee & Seltzer; JOEH, 2:8-18 (2005)

Definition of "Condition"

Assessing The Distribution [Database Method]
No reference to outdoor concentrations

- "Clean" Buildings
 - Asp/Pen spores < 750 spores/m³</p>
- "Moldy" Buildings
 - Asp/Pen spores > 950 spores/m³

750 - 950 spores/m³ => "Professional Judgment"

Baxter et al

Rimkus Consulting Group: Rank Order

Assessing The Distribution [Database Method] No reference to outdoor concentrations

Spurgeon Data: Asp/Pen Spores

CUMULATIVE %	AOC CASS	FILTER CASS
5 %	1,010	1,080
16 % [-1 ND]	2,000	2,500
50 % [Median]	5,650	9,000
84 % [+1 ND]	16,100	32,600
95 %	31,600	75,000

Comparing Distributions[Database Method]

Only 5 % of samples in problem houses < 1,000 s/m³, & 2,000 s/m³ is -1 ND below the median

Guidelines for "Clean" and "Moldy" Residential Buildings?

"Moldy" by three independent studies:

Baxter data: Asp/Pen => 950 spores/m³

Rimkus data: Asp/Pen => 1,000 spores/m³

Spurgeon data: Asp/Pen => 1,000-1,100 spores/m³

Database methods selected in all three studies

- and all with similar numerical guidelines
- coincidence?

Example Numerical Guidelines for "Clean" and "Moldy" Residential Buildings?

Asp/Pen: spores/m³

0 – 750: No evidence of contamination

750 – 1,250: Possible evidence of contamination

1,250 - 2,000: Probable evidence of contamination

> 2,000: Evidence of contamination

Airborne Samples in Hospitals

Assessing HEPA-Filtered Air in OR's & ICU's

Bi-Air Filter Cassette

Dual sample traces **20-fold concentration**

Spore Counts qPCR or Culture

"Database Method with Numerical Guidelines" in Hospitals

Asp/Pen Spores: Triple-filtered Air

Spores/m ³	OR's	ICU's
Samples [7 hosp]	20	29
Median	2.1	5.2
95 th Percentile	6*	30

*25 spores/m³ of Asp/Pen in OR resulted in remediation

*NO REFERENCE TO OUTDOOR CONCENTRATIONS

Numerical Guidelines in Hospital ICUs: Database: No Indoor-Outdoor Comparisons

"Database Methods with Numerical Guidelines"

Database Methods:

- Many laboratories now support ERMI
 - Database method with numerical guidelines
- Comparing distributions, not concentrations, substantially improves data quality

Numerical Guidelines:

Numerical Guidelines for airborne samples is a controversial Issue

Maybe it's time to have an adult conversation about their utility

